fine chemicals

RK-682

Code No.: BIA-R1082
Pack sizes: $\mathbf{0 . 5} \mathbf{~ m g , ~} \mathbf{2 . 5} \mathbf{~ m g}$

Synonyms : TAN 1364B, CI 010

Specifications

cAS \#
Molecular Formula
Molecular Weight
Source
Appearance
Purity
Long Term Storage
Solubility
: 332131-32-5
: $\mathrm{C}_{42} \mathrm{H}_{70} \mathrm{CaO}_{10}$
: 775.1
: Streptomyces sp.
: White Solid >95\% by HPLC
$-20^{\circ} \mathrm{C}$
: Soluble in ethanol, methanol, DMF or DMSO. Poor water solubility.

Application Notes

RK-682 is a dimeric calcium complex of the major analogue of a tetronic acid complex isolated from Streptomyces. Although reported by researchers at RIKEN in 1995, subsequent synthesis in 2001 showed that RK-682 was in fact the calcium complex formed during silica chromatography. Confusion about the structure of RK-682 has lead to the monomeric sub-unit, TAN 1364B (3-hexadecanoyl-5-hydroxymethyltetronic acid) being mis-named as RK-682 by many suppliers. As either the dimer or monomer, RK-682 inhibits protein tyrosine phosphatases, phospoholipase A2, heparinase and HIV-1 protease. However, is unclear whether biological activity is due to the monomer (TAN 1364B) or dimeric complex (RK-682).

References

1. RK-682, a potent inhibitor of tyrosine phosphatase, arrested the mammalian cell cycle progression at G1phase. Hamaguchi T. et al. FEBS Lett. 1995, 372, 54.
2. Structure-based design of a selective heparanase inhibitor as an antimetastatic agent. Ishida K. et al. Mol. Cancer Ther. 2004, 3, 1069.
3. The mechanism of ATP-induced long-term potentiation involves extracellular phosphorylation of membrane proteins in guinea-pig hippocampal CA1 neurons. Fujii S. et al. Neurosci. Lett. 1995, 187, 130.
4. Asymmetric synthesis of a 3 -acyltetronic acid derivative, RK-682, and formation of its calcium salt during silica gel column chromatography. Sodeoka M. et al. Chem. Pharm. Bull. 2001, 49, 206

Updated: 2 December 2014

