

ANALOGUE SET DATA SHEET

Code No.: BIA-MS5003

Erythromycin Degradation Set

Specifications

Each set contains 1 x 1mg vial of each of the following products:

Vial #	Compound	Code No.	CAS#	Mol. Formula	Mol. Wt.
1	Erythromycin A	BIA-E1311	114-07-8	C ₃₇ H ₆₇ NO ₁₃	733.9
2	Anhydroerythromycin A	BIA-A1348	23893-13-2	C ₃₇ H ₆₅ NO ₁₂	715.9
3	Erythromycin A enol ether	BIA-E1347	33396-29-1	C ₃₇ H ₆₅ NO ₁₂	715.9
4	Erythromycin A N-oxide	BIA-E1539	992-65-4	C ₃₇ H ₆₇ NO ₁₄	749.9
5	Pseudoerythromycin A enol ether	BIA-P1349	105882-69-7	C ₃₇ H ₆₅ NO ₁₂	715.9

Long Term Storage : -20°C, protect from light

Stability : Stable for more than 1 year when stored at -20°C, protected from light

Short Term Storage : Stable at ambient temperature for 1-2 weeks, protected from light

Shipping : Ambient temperature

Purity : Minimum purity of >95% by HPLC

Solubility : Methanol, ethanol, DMSO, some water solubility

Product Description: Erythromycin A is a structurally complex macrocyclic lactone which can be degraded by acidity, alkalinity, heat, oxidation, light and temperature. In vivo, erythromycin A may also undergo enzymic conversions via hydrolysis, oxidation, derivatisation and coupling. The degradation products are not biologically inert; rather, they offer new structures with unique physical and chemical properties that are often poorly understood. The Erythromycin Degradation Set provides the major degradation products described in the literature as a tool for understanding the complexity of erythromycin degradation in both in vivo and ex vivo systems.

Updated: 8 September 2014