

÷

PRODUCT DATA SHEET

Code No.: BIA-F1487

Pack sizes: 25 mg, 100 mg

Synonyms

(-)Florfenicol, Sch 25298

Specifications	
----------------	--

Florfenicol

opeenneanene		
CAS #	:	73231-34-2
Molecular Formula	:	C ₁₂ H ₁₄ Cl ₂ FNO ₄ S
Molecular Weight	:	358.2
Source	:	Synthetic
Appearance	:	White solid
Purity	:	>99% by HPLC
Long Term Storage	:	-20°C
Solubility	:	Soluble in ethanol, methanol, DMF or DMSO. Poor water solubility.

Application Notes

Florfenicol is synthesised from thiamphenicol by replacing the 3-hydroxy group with fluorine, first synthesised at Schering in 1980. By replacing the hydroxy group, it was rationalised that chloramphenicol resistance via chloramphenicol acetyltransferase could be eliminated. Florfenicol is a broad spectrum antibiotic with good activity against Gram negative and anaerobic bacteria. Florfenicol acts by binding to the 23S sub-unit of the 50S ribosome, inhibiting protein synthesis. Florfenicol has been extensively studied with over 400 literature citations.

References

- 1. An efficient synthesis of florfenicol. Schumacher D.P. et al. J. Org. Chem. 1990, 55, 5291.
- 2. An improved industrial synthesis of florfenicol plus an enantioselective total synthesis of thiamphenicol and florfenicol Wu G. et al. J. Org. Chem. 1997, 62, 2996.
- 3. In vitro activity of chloramphenicol and thiamphenicol analogs. Neu H.C. & Fu K.P. Antimicrob. Agents Chemother. 1980, 18, 311.

Updated: 2 December 2014